Problem 1. (10 Points)

a. Is the proposition

If $1<0$, then $3=4$.
True or false? Why ?
b. Find a proposition with two variables p and q that is never true. Don't prove your answer.
c. Write a proposition equivalent to $p \vee \neg q$ that uses only p, q, \neg and the connective \wedge. Don't prove your answer.

Problem 2. (10 Points)

a. Prove that the proposition "if it is not hot, then it is hot" is equivalent to "it is hot". Hint: Let p denote the proposition "it is hot"
b. Determine whether the proposition $((p \rightarrow \neg q) \wedge q) \rightarrow \neg p$ is a tautology:

Problem 3. (10 Points)

In this problem, suppose the variable x represents students and y represents courses, and consider the predicates:
$M(y): y$ is a math course $S(x): x$ is a sophomore, $F(x): x$ is a full-time student $T(x, y): x$ is taking y. Consider the following English statements:

1. Every student is taking a course
2. Some student is taking every course
3. Every full-time sophomore is taking a math course
4. Some full-time sophomore is taking a math course

What does each of the following represent (Circle one number).
a. $\exists x \forall y T(x, y)$
12
3
4
b. $\forall x \exists y[(B(x) \wedge F(x)) \rightarrow(M(y) \wedge T(x, y))]$. 1

Problem 4.(10 Points)

In this problem, suppose the variable x represents students and y represents courses, and consider the predicates:
$M(y): y$ is a math course $S(x): x$ is a sophomore, $F(x): x$ is a full-time student $T(x, y): x$ is taking y.
Write the statements below using these predicates and any needed quantifiers.
a. Some students are not sophomore.
b. Every sophomore is a full-time student and is taking a math course

Problem 5.(10 Points)

a. Show that the following argument is valid:

$$
p \vee q
$$

$\neg p \vee r$
$\therefore q \vee r$
b. Use (a) to show that the hypotheses "I left my notes in the library or I finished the rough draft of the paper" and "I did not leave my notes in the library or I revised the bibliography" imply that "I finished the rough draft of the paper or I revised the bibliography".

Problem 6. (5 Points)

Show that the following argument is valid:
She is a Math Major or a Computer Science Major.
If she does not know discrete math, she is not a Math Major.
If she knows discrete math, she is smart.
She is not a Computer Science Major.
Therefore, she is smart.
Hint: Use the symbols m, c, d, s, to represent the propositions She is a Math Major, She is a Computer Science Major, She knows discrete math, she is smart respectively.

Problem 7. (10 Points)

Suppose $B=\{x,\{x\}\}$. Mark the statement as TRUE or FALSE (Circle the right answer)
a. $\{x\} \in B$.
TRUE
FALSE
b. $\{x\} \subseteq B$.
TRUE
FALSE
c. $x \subseteq B$.
TRUE
FALSE
d. $\varnothing \in P(B)$.
TRUE
FALSE
e. $|P(B)|=4$
TRUE
FALSE

Problem 8.(10 Points)

Prove the following:
a. $A \cup \bar{B} \cup \bar{A}=\bar{A}$
b.If $A \cap B=A \cup B$, then $A=B$.

Problem 9 (10 Points)

Consider the function:
$f: \mathbf{Z} \rightarrow \mathbf{Z}$ where $f(x)=\left\{\begin{array}{l}x-2 \text { if } x \geq 5 \\ x+1 \text { if } x \leq 4 .\end{array}\right.$
a. Is f one-to-one? Why?
b. Is f onto? Why?

Problem 10 (10 Points).

a. Suppose $g: A \rightarrow B$ and $f: B \rightarrow C$, where $f \circ g$ is one-to-one and f is one-to-one. Show that g is one-to-on.
b. Suppose $g: A \rightarrow B$ and $f: B \rightarrow C$, where $f \circ g$ is one-to-one and g is one-to-one. Must f be 1-1? Why?

Problem 11.(5 Points)

Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ where $g(x)=2 x+1$ and $g \circ f(x)=2 x+11$. Find the rule for f.

Problem 12 (10 Points)

For each of the following, find a formula that generates the sequence $a_{1}, a_{2}, a_{3} \ldots$
a. $5,9,13,17,21, \ldots$.

$$
a_{n}=
$$

b. $15,20,25,30,35, \ldots$.

$$
a_{n}=
$$

c. $0,2,0,2,0,2,0, \ldots$.

$$
a_{n}=
$$

Problem 13 (15 Points)

a. (7) Show that the set of natural numbers divisible by 5 but not by 4 is countable
b. (8) Show that the union of two countably infinite sets is countably infinite

Problem 14 (10 Points)

Suppose $g: \mathbf{R} \rightarrow \mathbf{R}$ where $g(x)=\left\lfloor\frac{x-1}{2}\right\rfloor$.
a. If $S=\{x \mid 1 \leq x \leq 6\}$, find $g(S)$.
b. If $T=\{2\}$, find $g^{-1}(T)$.

Problem 15 (5 Points)

Show that $\lceil x\rceil=-\lfloor-x\rfloor$.

